Studying the limits of production rate and yield for the volume manufacturing of hollow core photonic band gap fibers.

نویسندگان

  • Gregory T Jasion
  • Eric Numkam Fokoua
  • John S Shrimpton
  • David J Richardson
  • Francesco Poletti
چکیده

Hollow core photonic band gap fibers have great potential in low latency data transmission and power delivery applications, but they are currently only fabricated in research scale fabrication facilities, with km-scale lengths. To drive cost reduction and volume manufacturing it is essential to be able to upscale the preform size, but before embarking on costly experimental attempts it is useful to apply fluid dynamics models to study how the fiber drawing dynamics would be affected by such a change. In this work we use a fluid dynamics model to virtually draw increasingly longer lengths of the same fiber from preforms of identical length but different diameters. Taking advantage of our fast numerical model we explore the physical dynamics of the draw process. We discover that the draw tension is the key thermodynamic parameter and that an upper length limit exists beyond which undesirable distortions in the microstructure become difficult to control. These mechanisms are identified and possible mitigation methods described which could allow the fabrication of over 200 km fiber from a single preform.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas Sensor Based on Large Hollow-Core Photonic Bandgap Fiber

One concern in using photonic band-gap fiber (PBGF) as a gas sensor is the response time. In this type of the gas sensors, response time is the time required for gas to diffuse into the hollow-core. So considering a large hollow-core PBGF (HC-PBGF), the response time can be significantly reduced. But in the large HC-PBGF, the fundamental issue is the presence of higher order modes (HOMs). Somet...

متن کامل

Plasmonic hollow-core photonic band gap fiber for efficient sensing of biofluids

We report a new family of hollow-core photonic crystal fibers with embedded metal wires for sensitive refractive index measurement of fluids. These fibers operate on the principle of resonant coupling of the guided core mode with the surface plasmon mode generated at the surface of metal wires embedded in the photonic crystal structure. A maximum sensitivity of 2151 nm RIU−1 (nanometer per refr...

متن کامل

Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller ...

متن کامل

Mode Multiplexing at 2×20Gbps over 19-cell Hollow-Core Photonic Band Gap Fibre

This paper demonstrates the first mode-multiplexed system over 19-cell hollow-core photonic band gap fibre, at 2×20Gbps using the LP0,1 and LP2,1-like modes. OCIS codes: 060.0060 (Fiber optics and optical communications), 060.5295 (Photonic crystal fibers)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 23 25  شماره 

صفحات  -

تاریخ انتشار 2015